
Supporting Social Data Observatory with
Customizable Index Structures on HBase -
Architecture and Performance

Xiaoming Gao1, Judy Qiu1, Evan Roth1, Karissa McKelvey1, Clayton Davis1,
Andrew Younge1, Emilio Ferrara1, Fil Menczer1

1 School of Informatics and Computing, Indiana University

Abstract. The intensive research activities in social data analysis in recent years
suggest the necessity and great potential of a public social data observatory. To ef-
fectively support a social data observatory, the storage platform must satisfy its
special requirements for loading and storage of Terabyte-level datasets, as well as
efficient evaluation of queries involving analysis of the texts of millions of social
updates. Traditional inverted indexing techniques do not meet such requirements
due to their targeted use cases in text retrieval scenarios. . To address these prob-
lems, we propose a general indexing framework, IndexedHBase, to build specially
customized index structures for facilitating efficient queries, and employ the
HBase system for distributed data storage. IndexedHBase is used to support the
Truthy system that collects and analyzes data obtained through the Twitter stream-
ing API. To handle the special queries in Truthy, we develop a parallel query
evaluation strategy that can explore the customized index structures efficiently.
We evaluate the performance of IndexedHBase on FutureGrid, and compare it
with Riak, a widely adopted commercial NoSQL database system. The results
show that IndexedHBase provides a data loading speed that is 6 times faster than
Riak, and is significantly more efficient in evaluating queries involving large re-
sult sets.

1. Introduction

Data intensive computing brings challenges in both large-scale batch analysis and
real-time streaming data processing. To meet these challenges, improvements to
various levels of cloud storage systems are necessary. Specifically, regarding the
problem of search in Big Data, using indices to facilitate query evaluation has
been a well-researched area in the field of database [1], and inverted indices [3]
are specially designed for full-text search.

Google’s Dremel [7] achieves efficient evaluation of aggregation queries on
large-scale nested datasets by using distributed columnar storage and multi-level

2

serving trees. Moreover, Power Drill [12] explores special caching and data skip-
ping mechanisms to provide even faster interactive query performance for certain
selected datasets. Discretized Streams [13] proposes a fault-tolerant distributed
processing model for streaming data by breaking continuous data streams into
small batches and then applying existing fault-tolerance mechanisms used in batch
processing frameworks.

Beyond these various data models and system features, it is still challenging to
enable real-time search and efficient analysis over a broader spectrum of social da-
ta scenarios. For example, [15] discusses the temporal and spatial challenges in
context-aware search and analysis on social media data. FluMapper [16] investi-
gates an interactive map-based interface for flu-risk analysis based on near real-
time processing of social updates collected from the Twitter streaming API [22].
Truthy [4] builds a public social data observatory that analyzes and visualizes in-
formation diffusion on Twitter, covering a broad spectrum of social activities, in-
cluding presidential elections [8], protest events [14], and meme competition [10].
This process involves analysis of some general entities and relationships contained
in its Terabyte-level large-scale social dataset, such as tweets, users, hashtags, re-
tweets, and user-mentions during specific time windows of the social events.

This chapter describes our research on building an efficient and scalable stor-
age platform for Truthy. Due to the sheer size of its structured social dataset, we
consider distributed NoSQL database systems as good options for the storage
backend. However, how to efficiently evaluate its temporal queries involving text
search on hundreds of millions of social updates remains a challenge. Many exist-
ing NoSQL databases, such as Solandra (now known as DataStax) [20] and Riak
[21], support distributed inverted indices [3] to facilitate searching text data. How-
ever, traditional distributed inverted indices are designed for text retrieval applica-
tions; they may incur unnecessary storage and computation overhead during in-
dexing and query evaluation time, and thus are not suitable for handling Truthy
queries. To solve these problems, specially customized index structures and query
evaluation strategies are necessary. Therefore, we propose a general customizable
indexing framework on HBase [18] as the basis of the storage platform, which al-
lows users to flexibly define the most suitable index structures to facilitate their
queries. Furthermore, based on Hadoop MapReduce [17], we implement a parallel
query evaluation strategy that can make the best use of the customized index
structures to achieve efficient evaluation of Truthy queries. We name our solution
“IndexedHBase”, and evaluate its performance on FutureGrid [6].

Currently the total size of historical data on Truthy is about 10 Terabytes. At
the time of this writing, the data rate of the Twitter streaming API is about 45 mil-
lion per day, leading to a growth of ~20GB in the total data size. We develop effi-
cient data loading strategies on that can accommodate fast loading of the historical
files as well as the growing speed of streaming data. Our preliminary results show
that compared with Riak, a widely adopted commercial NoSQL database system,
IndexedHBase provides significantly (6 times) faster data loading speed while re-

3

quiring much less storage size, and is more efficient (by multiple times) in evalu-
ating queries derived from large result sets.

2. Data and Query Patterns

The entire dataset of Truthy consists of two parts: historical data in .json.gz
files, and real-time data coming from the Twitter stream. Fig. 1 illustrates a sam-
ple data item, which is a structured JSON string containing information about a
tweet and the user who posted it. Furthermore, if the tweet is a retweet, the content
the original tweet is also included in a “retweeted_status” field. For hashtags, user-
mentions, and URLs contained in the text of the tweet, an “entities” field is in-
cluded to give more detailed information, such as the ID of the mentioned user,
and the expanded URLs.

Fig. 1. An example tweet in JSON format

Truthy uses the concept of “memes” to represent sets of related tweets corre-
sponding to specific discussion topics, communication channels or information
sources shared among Twitter users. Memes can be identified through elements
contained in the texts of tweets, such as keywords, hashtags (e.g., #euro2012), us-
er-mentions (e.g., @youtube), and URLs. Truthy supports a set of temporal que-
ries for extracting and generating various information about tweets, users, and
memes. These queries can be categorized into two subsets. The first contains basic
queries for getting the IDs or contents of tweets created during a given time win-
dow based on their text or user information, including:

4

get-tweets-with-meme (memes, time_window)
get-tweets-with-text (keyword, time_window)
get-tweets-with-user (user_id, time_window)
get-retweets (tweet_id, time_window)

For the parameters, “time_window” is given in the form of a pair of strings
marking the start and end points of a time window, e.g., [2012-06-08T00:00:00,
2012-06-23T23:59:59]. “memes” is given as a list of hashtags, user-mentions, and
URLs. “memes” and “keyword” may contain wildcards to specify prefix queries,
e.g., “#occupy*”, which will match all tweets containing hashtags starting with
“#occupy”..

The second subset contains queries for generating required information based
on analysis of the tweets returned from the first subset of queries, including
timestamp-count, user-post-count, meme-post-count, meme-cooccurrence-count,
get-retweet-edges, get-mention-edges (meme(s), time_window). Here for

 example, “timestamp-count” returns the number of tweets concerning the giv-
en memes posted on each day within the time window. Each “edge” has 3 compo-
nents: a “from” user ID, a “to” user ID, and a weight indicating how many times
the “from” user has retweeted the tweets from the “to” user, or mentioned the “to”
user in his/her tweets.

The most significant characteristic of these queries is that they all take a time
window as a parameter. This originates from the temporal nature of social activi-
ties. In order to evaluate these queries, an obvious brute-force solution is to scan
the whole dataset, try to match the content and creation time of each tweet with
the query parameters, and generate the results using information contained in the
matched tweets. However, due to the drastic difference between the size of the en-
tire dataset and the size of the query result, this strategy is prohibitively expensive.
For example, the total number of tweets for 06/01/2012 – 06/20/2012 is
626,958,383, while the number of tweets containing the most popular meme
“@youtube” is only 1,906,108, which is smaller by more than two orders of mag-
nitude. In order to efficiently locate the related tweets by their text content, a natu-
ral strategy is to utilize inverted indices [3], which are supported by many existing
distributed NoSQL database systems, such as Solandra [20] and Riak [21]. How-
ever, traditional distributed inverted indices do not provide the best solution for
Truthy queries for the following reasons:

First, traditional inverted indices are mainly designed for text retrieval applica-
tions, where the main goal is to efficiently find the top K (with a typical value of
20 or 50 for K) most relevant text documents regarding a query composed of a set
of keywords. To achieve this goal, information such as frequency and position of
keywords in the documents is stored and used for computing relevance scores be-
tween documents and keywords during query evaluation. In contrast, queries in
Truthy are designed for analysis purposes, meaning that they have to process all
the related tweets, instead of the top K most relevant ones, to generate the results.
Therefore, data about frequency and position are pure overhead for the storage of
inverted indices, the same for relevance scoring in the query evaluation process.

5

The query evaluation performance can be further improved by cutting these over-
heads from traditional inverted indices.

Second, query execution plans using traditional inverted indices are not effi-
cient enough for handling Truthy queries. Fig. 2 illustrates a typical query execu-
tion plan for “get-tweets-with-meme” using two separate indices on memes and
creation time of tweets. This plan uses the meme index to find the IDs of all
tweets containing the given memes, and then utilizes the time index to find the set
of tweet IDs within the given time window, and finally computes the intersection
of these two sets to get the results. Assuming the size of the posting lists for the
given memes to be m, and the number of tweet IDs coming from the time index to
be n, the complexity of the whole query evaluation process will be O(m + n) =
O(max(m, n)), using a merge-based or hashing-based algorithm for the intersec-
tion operation. However, due to the characteristics of the dataset in Truthy, there is
normally an orders-of-magnitude difference between m and n, as discussed above.
As a result, although the size of the query result is bounded by min(m, n), a major
part of query evaluation time is actually spent on scanning and checking irrelevant
entries of the time index. In classic text search engines, techniques such as skip-
ping or frequency-ordered inverted lists [3] may be utilized to quickly return the
top K most relevant results without evaluating all the related tweets. However,
such optimizations are not applicable in Truthy due to the analysis purpose of the
queries. Furthermore, in case of high cost estimation for accessing the time index,
the search engine may choose to only use the meme index, and generate the results
by checking the contents of related tweets. However, a big part of time is still
wasted in checking irrelevant tweets falling out of the given time window. The
query evaluation performance can obviously be further improved if these unneces-
sary scanning cost can be avoided.

Fig. 2. A typical query execution plan using indices on meme and creation time

In order to solve these issues, we suggest using a customized index structure in
IndexedHBase, as illustrated in Fig. 3. It basically merges the meme index and
time index, and replaces the frequency and position information in the posting lists
of the meme index with creation time of corresponding tweets. Facilitated by this
customized index structure, the query evaluation process for “get-tweets-with-
meme” can be easily implemented by going through the index entries related to

6

the given memes, and selecting the tweet IDs associated with a creation time with-
in the given time window. The complexity of the new query evaluation process is
O(m), which is significantly lower than O(max(m, n)). To support such index
structures, IndexedHBase provides a general customizable indexing framework,
which will be explained in Section 3.

Fig. 3. A customized meme element index structure

3. Design and Implementation of IndexedHBase

3.1 System Architecture

Fig. 4 illustrates the system architecture of IndexedHBase. As the basis of the ar-
chitecture, HBase is used to host the entire Truthy dataset and related indices with
two sets of tables: data tables containing original data, and index tables containing
customized index structures for query evaluation. The customized indexing
framework supports two mechanisms for building index tables: online indexing
that indexes data on the fly when they are loaded into data tables, and batch index-
ing that is used for building new index structures based on existing data tables.
Based on the customizable indexing framework, two data loading strategies are
supported to respectively load historical data and streaming data. The parallel que-
ry evaluation strategy provides efficient evaluation mechanisms for all the Truthy
queries, and is used by upper level Truthy applications to generate various statis-
tics and visualizations.

Fig. 4. System Architecture of IndexedHBase

7

3.2 Customizable Indexing Framework

Table Schemas on HBase

Based on the extendible “BigTable” data model [5] supported by HBase, we de-
sign the table schemas in Fig. 5 for Truthy. Tables are managed in units of months
– one set of tables are created for each month’s data. This management has two
benefits. First, the loading of streaming data only changes the tables relative to the
current month and does not impact tables for previous months. Secondly, during
query evaluations, the amount of index data and original data that needs to be
scanned is limited by the months covered under the time window parameter.

Some details about these tables need to be clarified before proceeding further.
Each table contains only one column family, e.g., “details” or “tweets”, on ac-
count of data in the columns being mostly accessed together. Also the user table
uses a concatenation of user ID and tweet ID as the row key because Truthy re-
quires keeping track of changes in user metadata associated with each tweet. Fi-
nally, besides the text index table, a separate meme index table is created to index
the hashtags, user-mentions, and URLs contained in the tweet texts. This is be-
cause some special cases, such as expandable URLs and reused screen names in
user-mentions, cannot be handled properly by the text index. The meme index ta-
ble uses hashtags, user-mentions, and URLs as row keys, and each row contains a
different number of columns. The name of each column is the ID of one tweet
containing the corresponding meme, and the timestamp of the cell value marks the
creation time of the tweet. The structures of other index tables can be similarly in-
ferred from Fig. 5.

Using HBase tables to implement customized index structures has the follow-
ing advantages:
(1) The flexible data model of HBase is suitable for storing the entries of our cus-

tomized index structures. If needed, users can further extend the existing
structures by embedding any additional information in the cell value of each
column.

(2) Based on the distributed architecture of HBase, we can achieve high availabil-
ity for index data and high performance for distributed index access.

(3) Since rows in HBase tables are sorted by row keys, prefix queries involving
text keywords and meme elements can be easily completed through range
scans over the corresponding index tables.

(4) Since each index structure is implemented as a separate table, it is easy to re-
build an index when its structure is modified, or to build a new customized
index structure for handling new queries, without having to reload the dataset.
Since the data access pattern in Truthy is mostly write-once-read-many, hav-
ing multiple index tables will not incur any maintenance cost beyond the ini-
tial loading and indexing process.

8

(5) Based on the original support for Hadoop MapReduce on HBase, it is possible
to complete efficient parallel analysis on the index data to generate useful
measurements, such as meme popularity distribution used in [10].

Fig. 5. Table schemas used in IndexedHBase for Truthy

Customizable Indexer Implementation

In order to generate records for the index tables, IndexedHBase implements a cus-
tomizable indexer library, shown in Fig. 6. Users can customize their index tables
by defining what to use as keys and what to use as entries in the index configura-
tion file. The customizable indexer automatically generates index table records ac-
cording to the configuration file, and inserts them into index tables upon the client
application’s request.

Fig. 6. Components of customizable indexer

Fig. 7 gives an example of the index configuration file in XML format. The
whole file contains multiple “index-config” elements. Each element contains the
mapping information between one source table and one index table. Users can
employ this element to flexibly define how to generate records for the index table

9

based on a given row from the source table. To deal with even more complicated
index structures, they can also implement a user defined customizable indexer on
their own, and specify to use this indexer by setting the “indexer-class” element.

Fig. 7. An example customized index configuration file

The general customizable indexer and the user defined customizable indexer
must both implement a common interface, which declares one “index()” method,
as presented in Fig. 8. This method takes the name and row data of a source table
as parameters, and returns a map as a result. The key of each map entry is the
name of one index table name, and the value is a list of records for that index ta-
ble.

Fig. 8. Pseudocodes for the “CustomizableIndexer” interface

Upon initialization, the general customizable indexer reads the index configura-
tion file, and analyzes each “index-config” element. If a user defined indexer class
is specified, a corresponding indexer instance will be created. When “index()” is
invoked during runtime, the general customizable indexer will go through all the
“index-config” elements related to the source table, and generate records for each
related index table, either by following the rules defined in “index-config” or by
invoking a user-defined indexer. Finally, all index table names and records are
added to the result map and returned to the client application.

Online Indexing Mechanism and Batch Indexing Mechanism

IndexedHBase provides two means of indexing data in the tweet table and user ta-
ble: online indexing and batch indexing. The online indexing mechanism is im-
plemented through the “insert()” method of the general customizable indexer, dis-
played in Fig. 6. The client application invokes the “insert()” method of the

10

general customizable indexer to insert one row to a source table. The indexer will
first insert the given row to the source table, and then generate index table records
for this row by invoking “index()”, and insert them to the corresponding index ta-
bles. Therefore, from the client application’s perspective, data in the source table
are indexed “online” when first inserted into the table.

The batch indexing mechanism is designed for generating new customized in-
dex tables after all the data have been loaded into the source table. This mecha-
nism is implemented as a “map-only” MapReduce job using the source table as
input. The job accepts a source table name and an index table name as parameters,
and starts multiple mappers to index data in the source table in parallel, each pro-
cessing one region of the table. Each mapper works as a client application to the
general customizable indexer, and creates one indexer instance at its initialization
time. The indexer is initialized using the given index table name so that when “in-
dex()” is invoked, it will only generate index records for that single table. The
“map()” function takes a <key, value> pair as input, where “key” is a row key in
the source table and “value” is the corresponding row data. For each row of the
source table, the mapper uses the general customizable indexer to generate index
table records and write these records as output. All output records are handled by
the table output format, which will automatically insert them into the index table.

3.3 Data Loading Strategies

IndexedHBase supports distributed loading strategies for both streaming data and
historical data in Truthy. Fig. 9 shows the architecture of the streaming data load-
ing strategy. In this strategy, one or multiple distributed loaders are running con-
currently. All loaders are connected to the same stream using the Twitter stream-
ing API, and each is responsible for loading a portion of the data. Each loaders is
assigned a unique loader ID, and works as a client application to the general cus-
tomizable indexer. Upon receiving a tweet JSON string from the stream, the load-
er will first take the tweet ID and do a modulus operation over the total number of
loaders in the system. If the result equals its loader ID, it will load the tweet to In-
dexedHBase. Otherwise the tweet is skipped. To load a tweet, the loader first gen-
erates records for the tweet table and user table based on the JSON string, then
loads them into the tables by invoking the “insert()” method of the general cus-
tomizable indexer, which will complete online indexing and update all the data ta-
bles as well as relevant index tables.

The historical data loading strategy is implemented as a MapReduce program.
Since tables are managed in the unit of months, one separate MapReduce job is
launched to load the historical .json.gz files for each month, and multiple jobs can
be running simultaneously in the system. Each one will start multiple mappers in
parallel, and every mapper is responsible for loading data from one file. At run-
ning time, each line in the .json.gz file is given to the mapper as one input, which

11

contains the JSON string of one tweet. The mapper first creates records for the
tweet table and user table based on the JSON string and then invokes the general
customizable indexer to get all the related index table records. All table records
are handled by the multi-table output format, which automatically inserts them in-
to the related tables. Finally, if the JSON string contains a “retweeted_status”, the
corresponding substring will be extracted and processed in the same way.

Fig. 9. Streaming data loading strategy

3.4 Parallel Query Evaluation Strategy

Based on the customized index tables generated by the data loading and indexing
process, we develop a two-phase parallel query evaluation strategy viewable in
Fig. 10. For any given query, the first phase uses multiple threads to find the IDs
of all related tweets from the index tables in relevant months, and saves them in a
series of files containing a fixed number (e.g., 30000) of tweet IDs. The second
phase launches a MapReduce job to process the tweets in parallel and extract the
necessary information to complete the query. For example, to evaluate “user-post-
count”, each mapper in the job will access the tweet table to figure out the user ID
corresponding to each tweet ID, count the number of tweets by each user, and out-
put all counts when it finishes. The output of all the mappers will be processed by
multiple reducers in parallel to finally generate the total tweet count of each user
ID. Implementation of the other queries can be similarly inferred.

Beyond the basic description above, two special aspects of the query evaluation
strategy are worth discussing.

First, as described in Section 2, prefix queries can be constructed by using pa-
rameters such as “#occupy*”. For this type of queries, IndexedHBase provides
two options for getting the related tweet IDs in the first phase. One option is to
simply complete a sequential range scan of rows in the corresponding index tables
and get all the qualified tweet IDs. The other option is to use a MapReduce pro-

12

gram to complete parallel scanning over the range of rows. This option is only
faster for parameters covering a large range spanning multiple regions of the index
table. When using prefix queries, users are allowed to specify which option to use
based on their estimation of the covered range size.

Next, the number of tweet IDs in each tweet ID file actually implies a tradeoff
between parallelism and scheduling overhead. When this number is set lower,
more mappers will be launched in the parallel evaluation phase, which means the
amount of work done by each mapper decreases while the total task scheduling
overhead increases. The optimal number to use actually depends on the total num-
ber of related tweets and the amount of resources available in the infrastructure.
Therefore, we set the default value of this number to 30,000 and leave it configu-
rable by the user when they run specific queries.

Fig. 10. Two-phase parallel evaluation process for an example “user-post-count” query

4. Performance Evaluation Results and Comparison with Riak

4.1 Testing Environment Configuration

We use 8 nodes on the Bravo cluster of FutureGrid to complete tests for both In-
dexedHBase and Riak. The hardware configuration for all eight nodes is listed in
Table 1. Each node runs CentOS 6.4 and Java 1.7.0_21. For IndexedHBase, Ha-
doop 1.0.4 and HBase 0.94.2 are used. One node is used to host the HDFS head-
node, Hadoop jobtracker, Zookeeper, and HBase master; the other 7 are used to
host HDFS datanodes, Hadoop tasktrackers, and HBase region servers. Data repli-
cation level is set to 2 on HDFS. The configuration details of Riak will be given in
Section 4.2.

13

Table 1. Per-node configuration on Bravo

CPU RAM Hard Disk Network
8 * 2.40GHz (Intel Xeon E5620) 192GB 2TB 40Gb InfiniBand

Besides Bravo, we also use the Alamo HPC cluster of FutureGrid to test the
scalability of the historical data loading strategy of IndexedHBase, since Alamo
can provide a larger number of nodes through dynamic HPC jobs. The hardware
configuration of each node on Alamo is listed in Table 2. Software configuration
is mostly the same as Bravo.

Table 2. Per-node configuration on Alamo

CPU RAM Hard Disk Network
8 * 2.66GHz (Intel Xeon X5550) 12GB 500GB 40Gb InfiniBand

4.2 Configuration and Implementation on Riak

Riak is a distributed NoSQL database for storing data in the form of <key, value>
objects. It organizes distributed nodes based on a P2P architecture with no central
servers, and distributes data objects among different nodes using consistent hash-
ing over the keys. Data are replicated to achieve high availability, and failures are
handled through a “hinted handoff” mechanism among neighboring nodes.

Riak supports various mime types for the value of data objects, including
JSON, plain text, Erlang binaries, etc. It provides a “Riak Search” module that can
build distributed inverted indices on data objects for full-text search purposes. Us-
ers can use buckets to organize their data objects, and configure indexed fields on
the bucket level. Besides basic inverted indexing functionality, Riak supports a
special feature called “inline fields.” If a field is specified as an “inline” field, its
value will be attached to the document IDs in the related posting lists, as illustrat-
ed in Fig. 11.

Fig. 11. An example of inline field (created_at) in Riak

Similar to our customized index tables in IndexedHBase, inline fields can be
used to carry out an extra filtering operation to speed up queries involving multi-
ple fields. However, they are different in two basic aspects:

For starters, support for inline fields is still an extension to traditional inverted
indices, which means overhead such as frequency information and document scor-
ing is still inevitable in Riak Search.

14

Secondly, customizable index structures are totally flexible in the sense that the
structure of each index can be independently defined to contain any subset of
fields from the original data. In contrast, if one field is defined as an inline field in
Riak Search, its value will be attached to the posting lists of the indices of all the
other indexed fields, regardless of whether it is useful. As a demonstration of this
problem, the “sname index table” in Fig. 5 uses the creation time of user accounts
as timestamps, while the “meme index table” uses creation time of tweets. Such
flexibility is not achievable on Riak – users can attach similar information to the
indices by specifying the creation time of user accounts and tweets as two separate
inline fields, but that will obviously result in further unnecessary storage over-
head.

In our tests, all 8 nodes of Bravo are used to construct a Riak ring. Each node
runs Riak 1.2.1, using LevelDB as the storage backend. We create two different
buckets to index data with different search schemas. Data replication level is set to
2 on both buckets. Within each bucket, <key, value> pairs are employed to direct-
ly store the tweet ID and JSON string of each tweet. The original JSON string is
extended with an extra “memes” field, which contains all the hashtags, user-
mentions, and URLs in the tweet, separated by a ‘\t’ character. Riak search is ena-
bled on both buckets to facilitate query evaluation, and the “user_id”, “memes”,
“text”, “retweeted_status_id”, “user_screen_name”, and “created_at” fields are in-
dexed. Specifically, “created_at” is defined as a separate indexed field on one
bucket, and as an “inline only” field on the other bucket, meaning that it does not
have a separate index but is stored together with the entries of other indices to en-
able inline filtering for queries on the other fields.

Riak also provides a lightweight MapReduce framework for users to query the
data by defining MapReduce functions in JavaScript. Furthermore, Riak supports
MapReduce over the results of Riak Search. We use this feature to implement
Truthy Queries, and Fig. 12 shows an example query implementation. When this
query is submitted, Riak will first use the index on “memes” to find related tweet
objects (as specified in the “input” field), then apply the map and reduce functions
to these tweets (as defined in the “query” field) to get the final result.

Fig. 12. An example Truthy query implementation on Riak

15

4.3 Data Loading Performance

Historical Data Loading Performance

We use all the .josn.gz files of June 2012 to test the historical data loading per-
formance of IndexedHBase and Riak. The total data size is 352GB. On In-
dexedHBase, a MapReduce job is launched for historical data loading, with each
mapper processing one file. On Riak, all 30 files are distributed among 8 nodes of
the cluster, so each node ends up with 3 or 4 files. Then an equal number of
threads per node were created to load all the files concurrently to the bucket where
“created_at” is configured as an inline field. Threads continue reading the next
tweet, apply preprocessing with the “created_at” field and “memes” field, and
then send the tweet as an object of mime type “JSON” to the Riak server, which
will automatically index all the fields as defined in the search schema.

Table 3 summarizes the data loading time and loaded data size on both plat-
forms. We can see that IndexedHBase is over 6 times faster than Riak in loading
historical data, and uses significantly less disk space for storing the data. Consid-
ering the original file size of 352GB and a replication level of 2, the storage space
overhead for index data on IndexedHBase is moderate.

Table 3. Historical data loading performance comparison

 Loading
time
(hours)

Loaded
total data
size (GB)

Loaded original
data size (GB)

Loaded
index data
size (GB)

Riak 294.11 3258 2591 667
IndexedHBase 45.47 1167 955 212
Comparative ratio of
Riak / IndexeHBase

6.47 2.79 2.71 3.15

We analyze these performance measurements below. By storing data with ta-
bles, IndexedHBase applies a certain degree of data model normalization, and thus
avoids storing some redundant data. For example, many tweets in the original
.json.gz files contain retweeted status, and many of them are retweeted multiple
times. On IndexedHBase, even if a tweet is retweeted repeatedly, only one record
is kept for it in the tweet table. On Riak, such a “popular” tweet will be stored
within the JSON string of every corresponding retweet. The difference in loaded
index data size clearly demonstrates the advantage of having a fully customizable
indexing framework. By avoiding frequency and position information and only in-
corporating useful fields in the customized index tables, IndexedHBase saves
455GB of disk space in storing index data, which is more than 1/3 the total loaded
data size of 1167GB. Also note that IndexedHBase compresses table data using
Gzip, which generally provides a better compression ratio than Snappy used in Ri-
ak.

16

The difference in loaded data size explains only a part of the gap in total load-
ing time. Two other major reasons are:
(1) On IndexedHBase, the loaders are responsible for generating both data tables

and index tables. Therefore, the JSON string of each tweet is parsed only once
when it is read from the .json.gz files and converted to table records. On Riak,
since indexing is done by Riak servers instead of the loaders, the JSON string
of each tweet is actually parsed twice – first by the loaders for preprocessing,
and again by the server for extracting indexed fields.

(2) When building inverted indices, Riak not only uses more space to store the
frequency and position information, but also spends more time collecting such
information. Therefore, the customized index structures on IndexedHBase not
only reduce disk storage requirement, but also lead to a faster loading speed.

Scalable Historical Data Loading on IndexedHBase

We test the scalability of historical data loading on IndexedHBase with the Alamo
cluster of FutureGrid, which allows us to use a larger number of nodes through
dynamic HPC jobs. In this test, we fix the dataset to files for two months, May
2012 and June 2012, and measure the total loading time at different cluster sizes
with 16, 24, and 32 data nodes. The results are illustrated in Fig. 13. As shown
here, when the cluster size is doubled from 16 to 32 data nodes, the total loading
time drops from 142.72 hours to 93.22 hours, which implies a sub-linear scalabil-
ity. Due to concurrent access from the mappers of the historical data loading jobs
to HBase region servers, it is almost impossible to get an ideal linear scalability.
Nonetheless, our results here clearly demonstrate that we can get more system
throughput and faster data loading speed by adding more nodes to the cluster.

Fig. 13. Historical data loading scalability

to cluster size

Fig. 14. Results for streaming data load-ing

test

Streaming Data Loading Performance on IndexedHBase

The purpose of streaming data loading tests on IndexedHBase is to verify that it
can provide enough data throughput to accommodate the growing data speed of

17

the Twitter streaming API. To test the performance of IndexedHBase for handling
potential data rates even faster than the current streams, we design a simulation
test using a recent .json.gz file for July 03, 2013. In this test, we vary the number
of distributed streaming loaders and test the system data loading speed against dif-
ferent number of loaders. For each case, the whole 2013-07-03.json.gz file is split
into the same number of fragments with equal size, which are then distributed
evenly across all the nodes. One loader is started to process each fragment on the
same node. The loader reads data from the stream of the local file fragment rather
than Twitter streaming API. So this test measures how the system performs when
each loader gets an extremely high incoming data rate that is equal to local disk
I/O speed.

Fig. 14 shows the total loading time when the number of distributed loaders in-
creases by powers of 2 from 1 to 16. Once again, concurrent access to the fixed
number of HBase region servers results in a decrease in speed-up as the number of
loaders is doubled each time. Specifically, the system throughput is almost satu-
rated when we have 8 distributed loaders. For the case of 8 loaders, it takes 3.85
hours to load all 45,753,194 tweets for July 3, 2013, indicating the number of
tweets that can be processed per day on 8 nodes is about 6 times the current daily
data rate. Therefore, IndexedHBase can easily handle the streaming data load in
Truthy. In the case of vastly accelerated data rates, we can always increase the
system throughput by adding more nodes.

4.4 Query Evaluation Performance

Separate Index Structures vs. Customized Index Structures

As analyzed in Section 2, one major purpose of using customized index structures
is to achieve lower query evaluation complexity than building traditional inverted
indices on separate data fields. To verify this, we use a simple “get-tweets-with-
meme” query to compare the performance of IndexedHBase and a solution using
separate indices on the fields of memes and tweet creation time, which is imple-
mented through the Riak bucket where “created_at” is defined as a separately in-
dexed field instead of an inline field.

In this test, we load the first 4 days’ data of June 2012 to both IndexedHBase
and the Riak bucket and measure the query evaluation time with different memes
and time windows. For memes, we choose “#usa”, “#ff”, and “@youtube”, each
contained in a different subset of tweets. “#ff” is a popular hashtag on Twitter,
meaning “follow Friday”. For each meme, we use 3 different time windows with a
varied length of 1 to 3 hours. Queries in this test only return tweet IDs – they don’t
launch an extra MapReduce phase to get the tweets’ content. Fig. 15 and 16 pre-
sent the query evaluation time for each indexing strategy. As shown in the results,

18

using the customized meme index table, IndexedHBase not only achieves a query
evaluation speed that is tens to hundreds of times faster, but also demonstrates a
different pattern in query evaluation time. When separate meme index and crea-
tion time index are used, the query evaluation time mainly depends on the length
of time window; the meme parameter has little impact. In contrast, when custom-
ized meme index is used, the query evaluation time mainly depends on the meme
parameter. For the same meme, the evaluation time only increases marginally as
the time window gets longer. These observations verify our theoretical analysis in
Section 2.

Fig. 15. Query evaluation time with sepa-
rate meme and time indices (Riak)

Fig. 16. Query evaluation time with custom-
ized meme index (IndexedHBase)

Query Evaluation Performance Comparison

This set of tests is designed to compare the performance of Riak and In-
dexedHBase for evaluating queries involving different number of tweets and dif-
ferent result sizes. Since using separate indices has proven inefficient on Riak, we
choose to test the query implementation using “created_at” as an inline field. Que-
ries are executed on both platforms against the data loaded in the historical data
loading tests. For query parameters, we choose one popular meme “#euro2012”,
along with a time window with a varied length of 3 hours to 16 days. The start
point of the time window is fixed at 2012-06-08T00:00:00, and the end point is
correspondingly varied exponentially from 2012-06-08T02:59:59 to 2012-06-
23T23:59:59. This time period covers a major part of the 2012 UEFA European
Football Championship.

The queries can be grouped into 3 categories based on the manner in which
they are evaluated on Riak and IndexedHBase:
(1) No MapReduce on either Riak or IndexedHBase

The “meme-post-count” query falls into this category. On IndexedHBase, que-
ry evaluation is done by simply going through the rows in meme index tables for
each meme in the query and counting the number of qualified tweet IDs. In case of
Riak, since there is no way to directly access the index data, this is accomplished

19

by issuing an HTTP query for each meme to fetch the “id” field of matched
tweets.

Fig. 17 shows the query evaluation time on Riak and IndexedHBase. As the
time window gets longer, the query evaluation time increases for both. However,
the absolute evaluation time is much shorter for IndexedHBase, because Riak has
to spend extra time to retrieve the “id” field.
(2) No MapReduce on IndexedHBase; MapReduce on Riak

 “timestamp-count” falls under this category. Inferring from the schema of the
meme index table, this query can also be evaluated by only accessing the index
data on IndexedHBase. On Riak, it is implemented with MapReduce over Riak
search results, where the MapReduce phase completes the timestamp counting
based on the content of the related tweets. Fig. 18 shows the query evaluation time
on both platforms. Since IndexedHBase does not need to analyze the content of
the tweets at all, its query evaluation speed is orders of magnitude faster than Ri-
ak.

Fig. 17. Query evaluation time for “meme-

post-count”
Fig. 18. Query evaluation time for

“timestamp-count”

(3) MapReduce on both Riak and IndexedHBase
Most queries require a MapReduce phase on both Riak and IndexedHBase. Fig.

19 shows the query evaluation time for several of these. An obvious trend is that
Riak is faster on queries involving a smaller number of related tweets and a small
result set, but IndexedHBase is significantly faster on queries involving a larger
number of related tweets and results. Table 4 lists the results sizes for “get-tweets-
with-meme” (row 1) and “get-mention-edges” (row 2). The other queries have a
similar pattern in result sizes.

20

Fig. 19. Query evaluation time for queries requiring MapReduce on both platforms

Table 4. Result sizes for get-tweets-with-meme and get-mention-edges

3-hour 6-hour 12-hour 1-day 2-day 4-day 8-day 16-day
1287 2539 9342 87596 144575 234643 434043 606062
673 1367 4885 31330 49265 80547 145498 207783

The main reason for the performance difference observed is the different char-
acteristics of the MapReduce framework on these two platforms. IndexedHBase
relies on Hadoop MapReduce, which is designed for fault tolerant parallel pro-
cessing of large batches of data. It implements the full semantics of the MapRe-
duce computing model and applies a heavyweight initialization process for setting
up the runtime environment on the worker nodes. Hadoop MapReduce uses local
disks on worker nodes to save intermediate data and does grouping and sorting be-
fore passing them to reducers. A job can be configured to use zero or multiple re-
ducers.

By comparison, the MapReduce framework on Riak is designed for lightweight
use cases where users can write simple query logic with JavaScript and get them
running on the data nodes quickly without a complicated initialization process.
There is always only one reducer running for each MapReduce job. Intermediate
data are transmitted directly from mappers to the reducer without being sorted or
grouped. The reducer relies on its memory stack to store the whole list of interme-
diate data, and thus has the risk of crashing for large intermediate data sizes. Fur-
thermore, the default timeout of the reducer is set to 5 seconds, and we actually

21

had to change this parameter in the source code and recompile Riak to get some of
the above queries working.

Since most queries in Truthy use time windows at the level of weeks or
months, IndexedHBase is more suitable for the queries above.

Improving Query Evaluation Performance with Modified Index Structures

One advantage of IndexedHBase is that it can accept dynamic changes to the in-
dex structures to achieve more efficient query evaluation. To verify this, we ex-
tend the meme index table to also include user IDs of tweets in the cell values, as
illustrated in Fig. 20. Using this new index structure, IndexedHBase is able to
evaluate the “user-post-count” query by only accessing index data.

Fig. 20. Extended meme index table schema

We test this schema change on the tables for the 2012-06 dataset. We used the
batch indexing mechanism of IndexedHBase to rebuild the meme index table,
which took 3.89 hours. The table size increased from 14.23GB to 18.13GB, which
is 27.4% larger. Fig. 21 illustrates the query evaluation time comparison. Obvious-
ly, query implementation using the new index structure is faster by more than an
order of magnitude. In cases where “user-post-count” is frequently used, the query
evaluation speed improvement is definitely worthy the storage overhead.

Fig. 21. Query evaluation time comparison with modified meme index table schema

22

5. Related Work

[15] discusses the temporal, spatial, and spatio-temporal challenges towards con-
text-aware search and analysis on social media data. From this perspective, our
current work on Truthy tries to address the temporal challenge in analysis scenari-
os, where the target is to apply analysis on all social updates that match a given
query, instead of finding the most related ones. References in [15] provides a more
complete list of related work about temporal and spatial analysis involving social
data.

FluMapper [16] is a Cyber-GIS-enabled [2] environment designed to facilitate
early detection and progression of influenza like illnesses (ILI). It provides an in-
teractive map-based interface for flu-risk analysis based on filtering and near real-
time processing of social updates collected from the Tiwtter streaming API. Com-
pared with the more specialized application scenarios in FluMapper, Truthy col-
lects a much larger dataset covering a broader spectrum of social activities, and
provides a set of temporal queries that are generally applicable in many social data
analysis scenarios.

Using indices to facilitate query evaluation has been a well-researched area in
the field of database [1], and inverted indices [3] are specially designed for full-
text search. Our customizable index structures share similar inspiration to multi-
ple-column indices used in relational databases, but index a combination of full-
text and primitive-type fields. Compared with traditional inverted indices, In-
dexedHBase provides more flexibility about what to use as keys and entries, so as
to achieve more efficient query evaluation with less storage and computation
overhead.

Google’s Dremel [7] uses distributed columnar storage and multi-level serving
trees to achieve efficient evaluation for aggregation queries on large datasets fol-
lowing a nested data model. Power Drill [12] provides even faster interactive que-
ry performance by exploring special caching and data skipping mechanisms on
certain selected datasets in Google. Inspired by Dremel and Power Drill, we will
consider splitting the tweet table into more column families for even better query
evaluation performance. On the other hand, our customizable indexing strategies
could also potentially help Dremel for handling aggregation queries with highly
selective operations.

[13] proposes a distributed streaming data processing model that achieves fault-
tolerant processing of streaming data by breaking continuous data streams into
small batches and then processing them with existing fault-tolerant mechanisms
used in batch processing frameworks such as MapReduce. Experience in [13] will
be useful for our next step on developing a fault-tolerant streaming data pro-
cessing framework for Truthy. However, since streaming data are mainly involved
in the loading and indexing phase, simpler failure recovery mechanisms may be
more suitable.

23

6. Conclusions and Future Work

This chapter describes our use case study about building an efficient and scalable
storage platform, IndexedHBase, to support the Truthy social data observatory. As
a result of our experimentation, we came to some interesting conclusions.

For starters, parallelization and indexing are key factors in addressing the chal-
lenges brought by the sheer data size and temporal queries of social data observa-
tories. In particular, parallelization should be explored through every stage of data
processing, including loading, indexing, and query evaluation.

Furthermore, index structures should be flexible and customizable, rather than
static, to effectively take advantage of the special characteristics of the dataset and
queries and achieve the best query evaluation performance at the cost of less stor-
age and computation overhead. In order to achieve this, a general customizable in-
dexing framework is necessary. To deal with the large size of intermediate data
and results involved in the query evaluation process, complete and reliable parallel
processing frameworks such as Hadoop MapReduce are needed. Lightweight
frameworks like Riak MapReduce are not capable of handling queries involving
analysis of large datasets.

To the best of our knowledge, IndexedHBase is a first in developing a totally
customizable indexing framework on a distributed NoSQL database. Although our
motivation originally came from social data observatories, the customizable index-
ing framework and two-phase query evaluation strategies are generally applicable
in all kinds of applications. There are four major directions that we can work on in
the future:

First, our current distributed streaming data loading strategy is simple and does
not take failure recovery of data loaders into consideration. Building a fault toler-
ant streaming data loading mechanism with a more sophisticated data distribution
framework will be a major part of our future work.

Secondly, we will try to further improve the efficiency of the parallel query
evaluation strategy by taking data locality into consideration.

Thirdly, another major part of our future work is to add support for spatial que-
ries by inferring and indexing spatial information contained in tweets. Thanks to
the batch index building mechanism supported by IndexedHBase, adding spatial
indices can be done efficient without completely reloading the original dataset.

Finally, we will try to integrate IndexedHBase with Hive [19] to provide a
SQL-like data operation interface for Truthy users. How to make the customized
index structures visible and useful to the query execution engine in Hive will be an
interesting research issue to explore.

24

References

[1] G. Graefe (1993). Query evaluation techniques for large databases. ACM Computing Sur-
veys (CSUR), 25(2): 73-169, 1993.

[2] S. Wang (2010). A CyberGIS Framework for the Synthesis of Cyberinfrastructure, GIS, and
Spatial Analysis. Annals of the Association of American Geographers, 100(3): 535-557,
2010.

[3] J. Zobel, A. Moffat (2006). Inverted files for text search engines. ACM Computing Surveys,
38(2) - 6, 2006.

[4] K. McKelvey, F. Menczer (2013). Design and Prototyping of a Social Media Observatory.
Proceedings of the 22nd international conference on World Wide Web companion, (WWW
2013).

[5] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra, A. Fikes,
R. Gruber (2006). Bigtable: A Distributed Storage System for Structured Data. Proceedings
of the 7th Symposium on Operating System Design and Implementation, (OSDI 2006).

[6] G. von Laszewski, G. Fox, F. Wang, A. Younge, A. Kulshrestha, G. Pike (2010). Design of
the FutureGrid Experiment Management Framework. Proceedings of Gateway Computing
Environments Workshop, (GCE 2010).

[7] S. Melnik, A. Gubarev, J. Long, G. Romer, S. Shivakumar, M. Tolton, T. Vassilakis (2010).
Dremel: Interactive Analysis of Web-Scale Datasets. Proceedings of the 36th International
Conference on Very Large Data Bases, (VLDB 2010).

[8] M. Conover, J. Ratkiewicz, M. Francisco, B. Goncalves, A. Flammini, F. Menczer (2011).
Political Polarization on Twitter. Proceedings of the 5th International AAAI Conference on
Weblogs and Social Media, (ICWSM 2011).

[9] E. Bakshy, J. Hofman, W. Mason, D. Watts (2011). Everyone’s an influencer: quantifying in-
fluence on Twitter. Proceedings of the 4th ACM international conference on Web search and
data mining, (WSDM 2011).

[10] L. Weng, A. Flammini, A. Vespignani, F. Menczer (2012). Competition among memes in a
world with limited attention. Nature Sci. Rep., (2) 335, 2012.

[11] A. Choudhary, W. Hendrix, K. Lee, D. Palsetia, W. Liao (2012). Social media evolution of
the Egyptian revolution. Communications of the ACM 55: 74–80, 2012.

[12] A. Hall , O. Bachmann , R. Büssow , S. Gănceanu , M. Nunkesser (2012). Processing a
Trillion Cells per Mouse Click. Proceedings of the 38th International Conference on Very
Large Data Bases, (VLDB 2012).

[13] M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica (2012). Discretized Streams: An Efficient
and Fault-Tolerant Model for Stream Processing on Large Clusters. Proceedings of the 4th
USENIX conference on Hot Topics in Cloud Computing, (HotCloud 2012).

[14] M. Conover, C. Davis, E. Ferrara, K. McKelvey, F. Menczer, A. Flammini (2013). The Ge-
ospatial Characteristics of a Social Movement Communication Network. PLoS ONE 8(3):
e55957, 2013.

[15] L. Derczynski, B. Yang, C. Jensen (2013). Towards Context-Aware Search and Analysis on
Social Media Data. Proceedings of the 16th International Conference on Extending Database
Technology, (EDBT 2013).

[16] A. Padmanabhan, S. Wang, G. Cao, M. Hwang, Y. Zhao, Z. Zhang, Y. Gao (2013).
FluMapper: An Interactive CyberGIS Environment for Massive Location-based Social Media
Data Analysis. Proceedings of Extreme Science and Engineering Discovery Environment:
Gateway to Discovery, (XSEDE 2013).

[17] Apache Hadoop. http://hadoop.apache.org/.
[18] Apache HBase. http://hbase.apache.org/.
[19] Apache Hive. http://hive.apache.org/.
[20] DataStax. http://www.datastax.com/.
[21] Riak. http://basho.com/riak/.

http://hadoop.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://www.datastax.com/
http://basho.com/riak/

25

[22] Twitter Streaming API. https://dev.twitter.com/docs/streaming-apis.

https://dev.twitter.com/docs/streaming-apis

